-- Intuitionistic propositional calculus.
-- Gentzen-style formalisation of syntax.
-- Normal forms and neutrals.

module IPC.Syntax.GentzenNormalForm where

open import IPC.Syntax.Gentzen public


-- Derivations.

mutual
  -- Normal forms, or introductions.
  infix 3 _⊢ⁿᶠ_
  data _⊢ⁿᶠ_ (Γ : Cx Ty) : Ty  Set where
    neⁿᶠ   :  {A}    Γ ⊢ⁿᵉ A  Γ ⊢ⁿᶠ A
    lamⁿᶠ  :  {A B}  Γ , A ⊢ⁿᶠ B  Γ ⊢ⁿᶠ A  B
    pairⁿᶠ :  {A B}  Γ ⊢ⁿᶠ A  Γ ⊢ⁿᶠ B  Γ ⊢ⁿᶠ A  B
    unitⁿᶠ : Γ ⊢ⁿᶠ 
    inlⁿᶠ  :  {A B}  Γ ⊢ⁿᶠ A  Γ ⊢ⁿᶠ A  B
    inrⁿᶠ  :  {A B}  Γ ⊢ⁿᶠ B  Γ ⊢ⁿᶠ A  B

  -- Neutrals, or eliminations.
  infix 3 _⊢ⁿᵉ_
  data _⊢ⁿᵉ_ (Γ : Cx Ty) : Ty  Set where
    varⁿᵉ  :  {A}      A  Γ  Γ ⊢ⁿᵉ A
    appⁿᵉ  :  {A B}    Γ ⊢ⁿᵉ A  B  Γ ⊢ⁿᶠ A  Γ ⊢ⁿᵉ B
    fstⁿᵉ  :  {A B}    Γ ⊢ⁿᵉ A  B  Γ ⊢ⁿᵉ A
    sndⁿᵉ  :  {A B}    Γ ⊢ⁿᵉ A  B  Γ ⊢ⁿᵉ B
    boomⁿᵉ :  {C}      Γ ⊢ⁿᵉ   Γ ⊢ⁿᵉ C
    caseⁿᵉ :  {A B C}  Γ ⊢ⁿᵉ A  B  Γ , A ⊢ⁿᶠ C  Γ , B ⊢ⁿᶠ C  Γ ⊢ⁿᵉ C

infix 3 _⊢⋆ⁿᶠ_
_⊢⋆ⁿᶠ_ : Cx Ty  Cx Ty  Set
Γ ⊢⋆ⁿᶠ      = 𝟙
Γ ⊢⋆ⁿᶠ Ξ , A = Γ ⊢⋆ⁿᶠ Ξ × Γ ⊢ⁿᶠ A

infix 3 _⊢⋆ⁿᵉ_
_⊢⋆ⁿᵉ_ : Cx Ty  Cx Ty  Set
Γ ⊢⋆ⁿᵉ      = 𝟙
Γ ⊢⋆ⁿᵉ Ξ , A = Γ ⊢⋆ⁿᵉ Ξ × Γ ⊢ⁿᵉ A


-- Translation to simple terms.

mutual
  nf→tm :  {A Γ}  Γ ⊢ⁿᶠ A  Γ  A
  nf→tm (neⁿᶠ t)     = ne→tm t
  nf→tm (lamⁿᶠ t)    = lam (nf→tm t)
  nf→tm (pairⁿᶠ t u) = pair (nf→tm t) (nf→tm u)
  nf→tm unitⁿᶠ       = unit
  nf→tm (inlⁿᶠ t)    = inl (nf→tm t)
  nf→tm (inrⁿᶠ t)    = inr (nf→tm t)

  ne→tm :  {A Γ}  Γ ⊢ⁿᵉ A  Γ  A
  ne→tm (varⁿᵉ i)      = var i
  ne→tm (appⁿᵉ t u)    = app (ne→tm t) (nf→tm u)
  ne→tm (fstⁿᵉ t)      = fst (ne→tm t)
  ne→tm (sndⁿᵉ t)      = snd (ne→tm t)
  ne→tm (boomⁿᵉ t)     = boom (ne→tm t)
  ne→tm (caseⁿᵉ t u v) = case (ne→tm t) (nf→tm u) (nf→tm v)

nf→tm⋆ :  {Ξ Γ}  Γ ⊢⋆ⁿᶠ Ξ  Γ ⊢⋆ Ξ
nf→tm⋆ {}             = 
nf→tm⋆ {Ξ , A} (ts , t) = nf→tm⋆ ts , nf→tm t

ne→tm⋆ :  {Ξ Γ}  Γ ⊢⋆ⁿᵉ Ξ  Γ ⊢⋆ Ξ
ne→tm⋆ {}             = 
ne→tm⋆ {Ξ , A} (ts , t) = ne→tm⋆ ts , ne→tm t


-- Monotonicity with respect to context inclusion.

mutual
  mono⊢ⁿᶠ :  {A Γ Γ′}  Γ  Γ′  Γ ⊢ⁿᶠ A  Γ′ ⊢ⁿᶠ A
  mono⊢ⁿᶠ η (neⁿᶠ t)     = neⁿᶠ (mono⊢ⁿᵉ η t)
  mono⊢ⁿᶠ η (lamⁿᶠ t)    = lamⁿᶠ (mono⊢ⁿᶠ (keep η) t)
  mono⊢ⁿᶠ η (pairⁿᶠ t u) = pairⁿᶠ (mono⊢ⁿᶠ η t) (mono⊢ⁿᶠ η u)
  mono⊢ⁿᶠ η unitⁿᶠ       = unitⁿᶠ
  mono⊢ⁿᶠ η (inlⁿᶠ t)    = inlⁿᶠ (mono⊢ⁿᶠ η t)
  mono⊢ⁿᶠ η (inrⁿᶠ t)    = inrⁿᶠ (mono⊢ⁿᶠ η t)

  mono⊢ⁿᵉ :  {A Γ Γ′}  Γ  Γ′  Γ ⊢ⁿᵉ A  Γ′ ⊢ⁿᵉ A
  mono⊢ⁿᵉ η (varⁿᵉ i)      = varⁿᵉ (mono∈ η i)
  mono⊢ⁿᵉ η (appⁿᵉ t u)    = appⁿᵉ (mono⊢ⁿᵉ η t) (mono⊢ⁿᶠ η u)
  mono⊢ⁿᵉ η (fstⁿᵉ t)      = fstⁿᵉ (mono⊢ⁿᵉ η t)
  mono⊢ⁿᵉ η (sndⁿᵉ t)      = sndⁿᵉ (mono⊢ⁿᵉ η t)
  mono⊢ⁿᵉ η (boomⁿᵉ t)     = boomⁿᵉ (mono⊢ⁿᵉ η t)
  mono⊢ⁿᵉ η (caseⁿᵉ t u v) = caseⁿᵉ (mono⊢ⁿᵉ η t) (mono⊢ⁿᶠ (keep η) u) (mono⊢ⁿᶠ (keep η) v)

mono⊢⋆ⁿᶠ :  {Ξ Γ Γ′}  Γ  Γ′  Γ ⊢⋆ⁿᶠ Ξ  Γ′ ⊢⋆ⁿᶠ Ξ
mono⊢⋆ⁿᶠ {}     η         = 
mono⊢⋆ⁿᶠ {Ξ , A} η (ts , t) = mono⊢⋆ⁿᶠ η ts , mono⊢ⁿᶠ η t

mono⊢⋆ⁿᵉ :  {Ξ Γ Γ′}  Γ  Γ′  Γ ⊢⋆ⁿᵉ Ξ  Γ′ ⊢⋆ⁿᵉ Ξ
mono⊢⋆ⁿᵉ {}     η         = 
mono⊢⋆ⁿᵉ {Ξ , A} η (ts , t) = mono⊢⋆ⁿᵉ η ts , mono⊢ⁿᵉ η t


-- Reflexivity.

refl⊢⋆ⁿᵉ :  {Γ}  Γ ⊢⋆ⁿᵉ Γ
refl⊢⋆ⁿᵉ {}     = 
refl⊢⋆ⁿᵉ {Γ , A} = mono⊢⋆ⁿᵉ weak⊆ refl⊢⋆ⁿᵉ , varⁿᵉ top